
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/254198356

Software Engineering Using Artificial Intelligence Techniques: Current State

and Open Problems

Article · March 2012

CITATIONS

28
READS

14,629

3 authors:

Some of the authors of this publication are also working on these related projects:

i-Doha 2022 View project

MASACAD View project

Hany Ammar

West Virginia University

159 PUBLICATIONS 3,339 CITATIONS

SEE PROFILE

Walid Abdelmoez

Arab Academy for Science, Technology & Maritime Transport

49 PUBLICATIONS 681 CITATIONS

SEE PROFILE

Mohamed Salah Hamdi

Ahmed Bin Mohammed Military College, Qatar

63 PUBLICATIONS 567 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mohamed Salah Hamdi on 22 October 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/254198356_Software_Engineering_Using_Artificial_Intelligence_Techniques_Current_State_and_Open_Problems?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/254198356_Software_Engineering_Using_Artificial_Intelligence_Techniques_Current_State_and_Open_Problems?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/i-Doha-2022?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/MASACAD?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hany-Ammar-4?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hany-Ammar-4?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/West_Virginia_University?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hany-Ammar-4?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Walid-Abdelmoez?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Walid-Abdelmoez?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Arab_Academy_for_Science_Technology_Maritime_Transport?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Walid-Abdelmoez?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Hamdi-18?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Hamdi-18?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Hamdi-18?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Hamdi-18?enrichId=rgreq-e5be9ef205ee7a0155bf5efbe6ef94d4-XXX&enrichSource=Y292ZXJQYWdlOzI1NDE5ODM1NjtBUzoxNTUwMDc3ODk4MzQyNDFAMTQxMzk2ODE0NTI2Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Software Engineering Using Artificial Intelligence
Techniques: Current State and Open Problems

Hany H Ammar
1,2

, Walid Abdelmoez
3
, and Mohamed Salah Hamdi

4
,

1 The Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA,
2
Computer Science Department, Faculty of Computers and Information, Cairo University, Egypt

3
Arab Academy for Science, Technology and Maritime Transport, Egypt

4
Ahmed Bin Mohamed Military College, Qatar

Abstract: This paper surveys the application of artificial

intelligence approaches to the software engineering processes.

These approaches can have a major impact on reducing the time to

market and improving the quality of software systems in general.

Existing survey papers are driven by the AI techniques used, or are

focused on specific software engineering processes. This paper

relates AI techniques to software engineering processes specified

by the IEEE 12207 standard of software engineering. The paper is

driven by the activities and tasks specified in the standard for each

software engineering process. The paper brings the state of the art

of AI techniques closer to the software engineer, and highlights the

open research problems for the research community.

Keywords: Automated Software Engineering, Artificial

Intelligence Techniques.

1. Introduction

The software intensive systems we develop these days

are becoming much more complex in terms of the number of

functional and nonfunctional requirements they need to

support. The impact of low quality can also have a

catastrophic impact on the mission of these systems in many

critical applications. Moreover, the cost of software

development dominates the total cost of such systems.

Research in applying artificial intelligence techniques to

software Engineering have grown tremendously in the last

two decades producing a large number of projects and

publications. A number of conferences and journals are

dedicated to publish the research in this field. The AI

techniques are proposed in order to reduce the time to

market and enhance the quality of software systems. Yet

many of these AI techniques remain largely used by the

research community and with little impact on the processes

and tools used by the practicing software engineer.

The recent survey papers published in this field are

mainly targeted to the research community. They are driven

by the specific AI techniques used rather than the software

engineering activities supported. They are also focused on a

specific software engineering process such as software

design [28]

This survey paper attempts to close the gap

between the research and practice of applying AI techniques

to the software engineering processes. It also highlights

open practical problems to the research community in

applying such techniques by surveying the recently

proposed work in this area.

We use the terminology and the processes defined by

the IEEE 12207 standard of software engineering. We then

map the current state art of AI art techniques proposed in the

literature to specific tasks and activities of some of the

software processes define by the 12207 standard. These AI

techniques attempt to automate or semi-automate these tasks

and produce optimal or semi-optimal solutions in much less

time. .

The paper is organized as follows. In section 2, we give

an overview of the IEEE 12207 standard of software

engineering, and describe the most important AI techniques.

We survey the current AI techniques proposed for the

primary processes of development in sections 3. We

highlight the open problems in section 4.

2. Background

 This section briefly introduces the primary

processes of the IEEE 12207 standard for software life cycle

processes. This standard is well documented and widely

used by the industry and has been adopted by the major

standards organizations.

2.1 The IEEE 12207 standard for Information

Technology-software life cycle processes

 This standard establishes a framework for software

life cycle processes, and provides well-defined terminology

to be used by all the stakeholders. It defines processes,

activities, and tasks that are to be applied during the

acquisition of a system that contains software, a stand-alone

software product, and software service. The standard covers

the tasks for the overall the life cycle phases during the

supply, development, operation, and maintenance of

software products.
 We briefly describe the processes defined by the

standard and their dependencies in a layered architecture.

The top layer contains the five primary life cycle processes

defined by the standard. These are the acquisition, supply,

development, operation, and maintenance processes. The

standard also defines four project organizational processes

that include the management process. Eight other supporting

processes are defined in the middle layer are defined to

support the primary processes and the management process

in the top layer. The dependencies between the processes are

specified. For example, the acquisition and the supply

© ICCIT 2012 24

processes interact to establish the contract for the project

and start the management process, which in turn manages

the development, operation, and maintenance processes.

The operation process depends on the maintenance process

to correct errors found, and how the later depends on the

development process to redevelop components that require

major changes.

3. The Development Process

 In this section we focus on the major tasks of the

development process based on the standard described above

and then survey some of the AI techniques used in

supporting the tasks of this process. In particular we focus

on the tasks related to requirements analysis, architecture

design, coding, and testing.

The system and software architectures play a major

role in driving the management activities during the

development and maintenance of software systems. The

standard provides a flow of the development process

activities and associated documents. The system architecture

design activity which produces the Software architecture

and requirements allocation description (SARAD)

document, establishes the top-level architecture of the

system and defines the software and hardware items of the

system. These items are then developed concurrently. The

software items development starts with the software

requirements analysis activity that produces the software

requirements specification document (SRS). Then the

software architecture design activity produces the

documents related to software architecture description

(SAD), software interface design description (SIDD). This is

followed by the software coding and testing activities. The

application of AI techniques in support of the tasks of these

activities is described in the following subsections.

3.1 Software requirements analysis

Requirement Engineering (RE):

Requirements are first expressed in natural language

within a set of documents. These documents usually

represent “the unresolved views of a group of individuals

and will, in most cases be fragmentary, inconsistent,

contradictory, not prioritized and often be overstated,

beyond actual needs” [31]. The main activities of this phase

are requirements elicitation, gathering and analysis and their

transformation into a less ambiguous representation [36].

Problems arising during this phase can be summarized

as follows:

● Requirements are ambiguous [27]

● Requirements are incomplete, vague and imprecise

[34] , [35]

● Requirements are conflicting [35]

● Requirements are volatile [18]

● There are communication problems between the

stakeholders [37]

● Requirements are difficult to manage [10]

In the following we explore the techniques used in the

requirement engineering field

Processing Natural Language Requirements NLR

The transformation of NLR into specifications and

design automatically, began in the early 1980s. In [1],

Abbott drew an analogy between the noun phrases used in

NL descriptions and the data types used in programming

languages. In those days requirements and modeling were

not as distinct activities as they are now. In [30];[18];[26],

the author noted that verb phrases and to some extent

adjectives describe relationships between these entities,

operations and functions.

In the following, we give examples of some of the

systems that have attempted to produce formal specification

from NL Requirements:

In [30], the authors proposed a framework to translate

specifications written in NL (English) into formal

specifications (TELL). their system was not implemented

but set the foundations for future systems. In [5], NL2ACTL

system was introduced the, which aims to translate NL

sentences, written to express properties of a reactive system,

to statements of an action based temporal logic. In [18], the

authors developed the FORSEN system which aims to

translate NL requirements into the Formal specifications

language VDM. This system allowed the detection of

ambiguities in the NL requirements.

In the following, we give examples of some of the

systems that have attempted to produce OO oriented models

from NL Requirements

In [11], the authors defined a general framework for the

automatic development of OO models from NL

requirements using linguistics instruments. In [20], a Large-

scale Object-based Linguistic Interactor Translator Analyser

(LOLITA) NLP system was used to develop the NL-OOPS

which aims to produce OO specifications from NL

requirements in [11], the researchers developed an approach

that linked the linguistic world and the conceptual world

through a set of linguistic patterns. In [7], the authors

developed the Class-Model Builder (CM-Builder), a NL

based CASE tools that builds class diagrams specified in

UML from NL requirements documents

Knowledge Based Systems (KBS):

In [13], the authors stated that “The reuse of experts

design knowledge can play a significant role in improving

the quality and efficiency of the software development

process”. KBS were used to store design families, upon the

development of the requirements, input and outputs of the

system’s functionality. The system searches the KB and

proposes a design schema which is refined by the user to

fully satisfy the requirements. In [31], The READS tool

supports both the front end activities such as requirement

25

discovery, analysis and decomposition and requirements

traceability, allocation, testing, and documentation

Ontologies:

Ontologies are developed by many organizations to

reuse, integrate, and merge data and knowledge and to

achieve interoperability and communication among their

software systems. In [34], the authors use semantic web and

ontological techniques to elicit, represent, model, analyze

and reason about knowledge and information involved in

requirements engineering processes. In [4], the researchers

have developed the Ontology-based software Development

Environment (ODE) based on a software process ontology.

Intelligence Computing for Requirements Engineering:

In this section, we will discuss some of the systems

developed using Computational Intelligence (CI) techniques

to support requirements engineering The SPECIFIER

system [21] can best be viewed as a case based system that

takes as input an informal specification of an operation

where the pre and post-conditions are given as English

sentences. In [35], the authors used fuzzy logic and

possibility theory to develop an approximate reasoning

schema for inferring relative priority of requirements under

uncertainty, to assess requirements priorities . This is to

achieve an effective trade off among conflicting

requirements so that each conflicting requirement can be

satisfied to some degree.

In [12], an approach is presented that uses

computational linguistics to analyze textual scenarios, to

identify where actors or whole actions are missing from the

text, to fill the missing information, and to generate a

message sequence chart (MSC) including the information

missing from the textual scenario. Then, the requirements

analyst validates the generated MSC.

In Jose Del Salgado Martinez et al (Chapter 6 in [19]),

the authors constructed a Bayesian network to predict

whether a requirements specification has enough quality to

be considered as a baseline. In order to structure and

quantify the final model of the Bayesian network

“Requisites”, several information sources were used, such as

standards, reports, and through interaction with experts. This

Bayesian network represents the knowledge needed when

assessing a requirements specification. Requisites were

demonstrated on some use cases. After the propagation over

the network of information collected about the certainty of a

subset of variables, the value predicted determine whether

the requirements specification has to be revised or not.

In [3], the authors present a collaborative and situational

tool called MUSTER, that has been designed and developed

for requirements elicitation workshops. The tool also offers

an example of how a group support system, coupled with

artificial intelligence, can be applied to very practical

activities and situations within the software development

process.

3.2 Software architecture design

 One of the most important problems facing the

software engineer is to develop quality architecture from the

requirements model. In this section we describe recent work

on software architecture design using AI techniques.

Developing the software architecture starts by defining a

hierarchy of subsystems and components with allocated

responsibilities from the information provided by the

requirements and analysis models. AI techniques uses

quality attributes to define a goodness function over the

space of possible architectures. Some of the most common

quality attributes of architecture design used in developing

the architecture are modularity, complexity, modifiability,

understandability (or clarity), and reusability. Modularity is

usually connected to the concept of coupling and cohesion,

where designers strive for a modular design by developing

the architecture using loosely coupled and highly cohesive

subsystems and components. In an earlier work on using AI

techniques for software architecture development, Robyn

Lutz [14] used Genetic Algorithms (GAs) to search the

space of possible hierarchical decompositions of a system.

She introduced a fitness function using information theoretic

metric capturing the data coupling and control coupling

between components. The quality attribute used for the

fitness function is related to the complexity and modularity

of the produced architecture. Later on, she focused in her

further research on Product Line Architectures (PLAs)

[15,16] where variation points are explicitly defined to

enhance reusability and modifiability of reference

architecture that can be used to instantiate a family of

architectures. Other work on hierarchical decompositions of

a system is summarized in [28].

A promising recent work on synthesizing

architecture from requirements using GAs is presented in

[29]. Figure 1 shows the process of architecture generation.

In this work, the requirements model based on use-cases that

captures the functional requirements is used to develop a

null architecture that gives the basic decomposition of the

functionalities into components. The null architecture is

represented by a UML class diagram that is generated from

use-case sequence diagrams. The null architecture is used by

the GA to first create an initial population of architectures.

A fixed library of standard architectural solutions based on

styles and patterns is used to produce new generations. The

fitness function of the GA is defined by a weighted list of

metrics of quality attributes. This function can also be

optionally defined by scenarios capturing specific quality

attributes. The work presented is restricted to modifiability

scenarios because it can be easily formalized. Details of the

GA technique used and the results of testing are given in the

reference.

26

3.3 Software coding and testing

Techniques learned from AI research make advanced

programming much simpler, especially with regard to

information flow and control as a result of advances in

knowledge representation. In the following we focus on the

AI techniques used in supporting the tasks of coding and

testing.

 Figure 1. Evolutionary architecture generation Adopted from

[29].

a) Coding:

Software engineers can apply AI techniques to help

automate or assist the programming process.

Use of AI to help assist the programming process:

The main idea here is to create an expert system to assist

software engineers during software development [23], [24].

In [23], this proposal is called the Programmer's Apprentice

Project. The Programmer's Apprentice should have the

capability of interacting with the human programmers

exactly the same way as human assistants would, thereby

hopefully increasing the productivity of the human

programmers. At first, the Apprentice would only be able to

handle "the simplest and most routine parts" of

programming. As time progresses and research continues,

the Apprentice should be able to deal with more complicated

tasks. The human programmers will still be necessary to

implement code of a 'tricky' nature (such as abstract

reasoning or to better cater human preferences).

Use of AI to help automate the programming process:

The idea here is to have a completely automated program

synthesis. This is done by having human specialists write a

complete and concise specification of the desired software;

so that, a system can generate "functions, data structures, or

entire programs" directly from the specifications [8]. There

are many possible AI technologies that could be applied.

Analogical reasoning in software reuse can be used. The

idea is to find a system with similar requirements and

modify it. Although this process looks feasible, it has not

been demonstrated in software engineering to any great

extent.

Closely related to analogical reasoning techniques is Case-

based reasoning (CBR). CBR is based upon the premise that

similar problems are best solved with similar solutions. CBR

is argued to offer a number of advantages over many other

knowledge management techniques. For program synthesis

retrieval from component repositories and the reuse of

successful past Experience is important. As an example, one

application of CBR technology was to support the reuse of

software packages within Ada and C program libraries.

The idea of experience reuse, the most ambitious form of

CBR-supported reuse, is closely aligned with what is called

Experience Factory. This field is also known as

Organizational Learning, researches methods and techniques

for the management, elicitation, and adaptation of reusable

artifacts from software engineering projects. An Experience

Factory is based upon a number of premises such as a

feedback process, appropriate storage of experience, and

support of reuse and retrieval [25].

Constraint programming is another AI technique that is

applied in software engineering. Constraint programming

has been, for example, used to design the PTIDEJ system

(Pattern Trace Identification, Detection and Enhancement in

Java. PTIDEJ is an automated system designed to identify

micro-architectures looking like design patterns in object

oriented source code. A micro-architecture defines a subset

of classes in an objected oriented program. The main interest

of PTIDEJ is that it is able to provide explanations for its

answers. This is really interesting since coding and software

engineering is often considered a form of art and where fully

automated systems are not always appreciated by potential

users (or programmers).

Search Based Software Engineering (SBSE) is an emerging

research topic that focuses on representing aspects of

Software Engineering as problems that may be solved using

meta-heuristic search algorithms developed in AI. SBSE is

the reformulation of software engineering tasks as

optimization problems. One of the optimization and search

techniques that can be used are genetic algorithms. Genetic

algorithms are used for automatic code generation by

optimizing a population of trial solutions to a problem. The

individuals in the population are computer programs.

b) Testing: Software testing remains an expensive task in

the development process and one of the main challenges

concerns its possible automation. AI techniques can

play a vital role in this regard. One of these techniques

are constraint solving techniques. Since the seminal

work of Offut and De Millo in the context of mutation

testing [40], much attention has been devoted to the use

of constraint solving techniques in the automation of

software testing (Constraint-based testing). ATGen, for

example, is a software test data generator based on

27

symbolic execution and constraint logic programming

for ADA programs.

There are many other ways how AI techniques can

support the testing process [19]. One of the earliest studies

to suggest adoption of a knowledge based system for testing

was by Bering and Crawford [2] who describe a Prolog

based expert system that takes a Cobol program as input,

parses the input to identify relevant conditions and then aims

to generate test data based on the conditions.

A more active area of research since the mid-1990s has

been the use of AI planning for testing. An AI planner could

generate test cases, consisting of a sequence of commands

by representing commands as operators, providing initial

states, and setting the goal as testing for correct system

behavior [9]. AI planning was also used for testing

distributed systems [6] and for the generation of test cases

for graphical user interfaces [17].

A study by Kobbacy, et al [38] has shown that the use

of genetic algorithms for optimization has grown

substantially since the 1980s. This trend is also present in

their use in testing, with numerous studies aiming to take

advantage of their properties in an attempt to generate

optimal test cases. The authors in [33], for example, used

genetic algorithms for testing object oriented programs

where the main aim was to construct test cases consisting of

a sequence of method calls.

Fuzzy logic is another AI technique that is applied in

software testing to manage the uncertainty involved in this

phase of software development [39].

4. Open Problems

Open problems that Artificial Intelligence can help in

the requirements engineering phase include the following:

[19]

● Disambiguating natural language requirements

● Developing knowledge based systems and ontologies

to manage the requirements and model problem

domains

● The use of computational intelligence to solve the

problems of incompleteness and prioritization of

requirements.

One of the most difficult problems is the problem of

transforming requirements into architectures. Much research

is needed in this area to address the ever increasing

complexity of functional and non-functional requirements.

Recent important research problems are developing product

line architectures and service-oriented architectures using AI

techniques.

Test data generation is notoriously hard. Recent work

(including that one search based testing) has made progress

towards the ultimate goal of fully automated test case

design. However, the techniques that are being developed

are often hampered by features of the programs under test.

One area that has received some attention is the use of

automated algorithms with machine learning to make

repair assignments. In any case, more studies with respect

to the appropriate criteria for selecting assignment policy,

reward mechanisms and management goals need to be

undertaken.
One open problem with Search-Based Software Testing

techniques, and Search-Based Test Data Generation

techniques in particular, is lack of handling of the execution

environment that the software under test lives within.

Current state of the art in test data generation, for example,

ignores or fails to handle interactions with the underlying

operating system, the file system, network access and

databases on which they may be dependent.

Another problem with Search-Based Software Testing

techniques is: because fitness functions are heuristics, there

are cases in which they fail to give adequate guidance to the

search.

Constraint-Based Testing (CBT) is the process of generating

test cases from programs or models by using the Constraint

Programming technology. Scalability is the main challenge

that CBT tools have to face to.

Dealing with more than hundred of thousands lines of code,

with dynamic constructions such as huge dynamic data

structures, with non-linear numerical constraints extracted

from complex statements are some of the problems we have

to deal with.

5. Conclusions

 In this paper, we surveyed promising research work

on applying AI techniques to solve some of the most

important problems facing the software engineer. We

surveyed research in the development activities of

requirements engineering, software architecture design, and

coding and testing processes. We summarized the most

important open problems in these active research areas.

6. Aknowledgements
 This research work was funded by Qatar National

Research Fund (QNRF) under the National Priori-ties

Research Program (NPRP) Grant No.: 09-1205-2-470.

7. References

[1] Abbott, R. J. (1983). Program design by informal English

descriptions. CACM, 26(11), 882–894.

[2] Bering, C. A., & Crawford, M. W. (1988). Using an expert

system to test a logistics information system. In Proceedings of the

IEEE National Aerospace and Electronics Conference (pp. 1363-

1368), Dayton, OH. Washington DC: IEEE Computer Society.

[3] Coulin, C., Zowghi, D., & Sahraoui, A. (2010). MUSTER: A

Situational Tool for Requirements Elicitation. In F. Meziane, & S.

Vadera (Eds.), Artificial Intelligence Applications for Improved

Software Engineering Development: New Prospects (pp. 146-165).

[4] Falbo, R. A., Guizzardi, G., Natali, A. C., Bertollo, G., Ruy, F.

F., & Mian, P. G. (2002), Towards semantic software engineering

environments. Proceedings of the 14th international Conference on

Software Engineering and Knowledge Engineering, (pp. 477-478).

28

[5] Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi,

M., & Moreschini, P. (1994). Assisting requirement formalization

by means of natural language translation. Formal Methods in

System Design, 4(3), 243–263.

[6] Gupta, M., Bastani, F., Khan, L., & Yen, I.-L. (2004).

Automated test data generation using MEA-graph planning. In

Proceedings of the Sixteenth IEEE Conference on Tools with

Artificial Intelligence (pp. 174-182). Washington, DC: IEEE

Computer Society.

[7] Harmain, H. M., & Gaizauskas, R. (2003). CM-Builder: A

natural language-based CASE tool for object-oriented analysis.

Automated Software Engineering Journal, 10(2), 157–181.

[8] Hewett, Micheal, and Rattikorn Hewett (1994). 1994 IEEE

10th Conference on Artificial Intelligence for Applications.

[9] Howe, A. E., von Mayrhauser, A., & Mraz, R. T. (1995). Test

sequences as plans: an experiment in using an AI planner to

generate system tests. In Proceedings of the Tenth Conference on

Knowledge-Based Software Engineering (pp. 184-191).

[10] Hull, E., Jackson, K., & Dick, J. (2005). Requirements

Engineering. Berlin: Springer.

[11] Juristo, N., Moreno, A. M., & López, M. (2000). How to use

linguistics instruments for Object-Oriented Analysis. IEEE

Software, (May/June): 80–89..

[12] Kof, L. (2010). From Textual Scenarios to Message Sequence

Charts. In F. Meziane, & S. Vadera (Eds.), Artificial Intelligence

Applications for Improved Software Engineering Development:

New Prospects (pp. 83-105).

[13] Lubars, M. D., & Harandi, M. T. (1987). Knowledge- based

software design using design schemas. In Proceedings of the 9th

international Conference on Software Engineering, (pp. 253-262).

[14] Lutz, R. “Evolving good hierarchical decompositions of

complex systems,” Journal of Systems Architecture 47 (2001),

613–634.

[15] Lutz, R. “A Survey of Product-Line Verification and

Validation Techniques,” JPL-NASA Technical Report, 2007

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41221/1/07-

2165.pdf

[16] Jing (Janet) J. Liu, Samik Basu and Robyn R. Lutz:

Generating Variation Point Obligations for Compositional Model

Checking of Software Product Lines. Journal of Automated

Software Engineering, p. 29, vol. 18, 2011

[17] Memon, A. M., Pollack, M. E., & Soffa, M. L. (1999). Using

a Goal Driven Approach to Generate Test Cases for GUIs. In

Proceedings of the Twenty-first International Conference on

Software Engineering (pp. 257-266).

[18] Meziane, F. (1994). From English to Formal Specifications.

PhD Thesis, University of Salford, UK.

[19] Meziane, F. and Vadera, S., (2010). Artificial Intelligence in

Software Engineering Current Developments and Future Prospects,

In "Artificial Intelligence Applications for Improved Software

Engineering Development: New Prospects", IGI Global

[20] Mich, L. (1996). NL-OOPS: from natural language to object,

oriented requirements using

the natural language processing system LOLITA. Natural

Language Engineering, 2(2), 161–187.

[21] Miriyala, K., & Harandi, M. T. (1991). Automatic derivation

of formal software specifications from informal descriptions. IEEE

Transactions on Software Engineering, 17(10), 1126–1142.

[22] Moreno, C. A., Juristo, N., & Van de Riet, R. P. (2000).

Formal justification in object-oriented modelling: A linguistic

approach. Data & Knowledge Engineering,33, 25–47.

[23] Partridge, Derek, ed. (1991). Artificial Intelligence and

Software Engineering. New Jersey: University of Exeter, 1991.

[24] Phil B. (1999). The Use of Artificial Intelligence for Program

Development,

http://www.philforhumanity.com/The_Use_of_Artificial_Intelligen

ce_for_Program_Development.html

[25] Shepperd, M. J. (2009). Case-based reasoning and software

engineering. Empirical Software Engineering. Springer. Retrieved

from http://hdl.handle.net/2438/3049.

[26] Poo, D. C. C., & Lee, S. Y. (1995). Domain object

identification through events and functions. Information and

Software Technology, 37(11), 609–621.

[27] Presland, S. G. (1986). The analysis of natural language

requirements documents. PhD Thesis, University of Liverpool,

UK.

[28] Outi Räihä, A survey on search-based software design,”

Computer Science Review, 4 (2 0 1 0) 203 – 249.

[29] Outi Räihä, Hadaytullah , Kai Koskimies and Erkki Mäkinen

“Synthesizing Architecture from Requirements: A Genetic

Approach” UNIVERSITY OF TAMPERE DEPARTMENT OF

COMPUTER SCIENCES SERIES OF PUBLICATIONS – NET

PUBLICATIONS , AUGUST 2010

[30] Saeki, M., Horai, H., & Enomoto, H. (1989). Software

development process from natural language specification. In

Proceedings of the 11th international Conference on Software

Engineering. (pp. 64-73), Pittsburgh, PA.

[31] Smith, T. J. (1993). READS: a requirements engineering tool.

Proceedings of IEEE International Symposium on Requirements

Engineering, (pp. 94–97), San Diego.

SSBSE (2010). http://www.ssbse.org, checked 10.5.2011.

[32] Vadera, S., & Meziane, F. (1994). From English to Formal

Specifications. The Computer Journal, 37(9), 753–763.

von Mayrhauser, A., France, R., Scheetz, M., & Dahlman, E.

(2000). Generating test-cases from an object-oriented model with

an artifical-intelligence planning system. IEEE Transactions on

Reliability, 49(1), 26–36. doi:10.1109/24.855534

[33] Wappler, S., & Wegener, J. (2006). Evolutionary unit testing

of object-oriented software using strongly-typed genetic

programming. In Proceedings of the Eighth Annual Conference on

Genetic and Evolutionary Computation (pp. 1925-1932), Seattle,

WA. New York: ACM Press.

[34] Yang, Y., Xia, F., Zhang, W., Xiao, X., Li, Y., & Li, X.

(2008). Towards Semantic Requirement Engineering. IEEE

International Workshop on Semantic Computing and Systems (pp.

67-71).

[35] Yen, J., & Liu, F. X. (1995). A Formal Approach to the

Analysis of Priorities of Imprecise Conflicting Requirements. In

Proceedings of the 7th international Conference on Tools with

Artificial intelligence. Herndon, VA , USA

[36] Young, R. R. (2003). The requirements Engineering

Handbook. Norwood, MA: Artech House Inc.

[37] Zave, P. (1997). Classification of Research Efforts in

Requirements Engineering. ACM Computing Surveys, 29(4), 315–

321.

[38] Kobbacy, K. A., Vadera, S., & Rasmy, M. H. (2007). AI and

OR in management of operations: history and trends. The Journal

of the Operational Research Society, 58, 10–28.

doi:10.1057/palgrave. jors.2602132

[39] Nand, S., Kaur, A., Jain S. (2007).Use Of Fuzzy Logic In

Software Development. Issues in Information Systems. Volume

VIII, No. 2, pp. 238-244

[40] DeMillo, R.A., Offutt, A.J. (1991). Constraint-based

automatic test data generation. IEEE Transactions on Software

Engineering 17 (9), 900–910.

29

View publication statsView publication stats

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41221/1/07-2165.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41221/1/07-2165.pdf
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
http://www.philforhumanity.com/The_Use_of_Artificial_Intelligence_for_Program_Development.html
https://www.researchgate.net/publication/254198356

